Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

We aim to foster research partnerships that contribute to a swifter expansion of global knowledge.

Articles

We aim to foster research partnerships that contribute to a swifter expansion of global knowledge.

Explore Content

We aim to foster research partnerships that contribute to a swifter expansion of global knowledge.

Identify Us

We aim to foster research partnerships that contribute to a swifter expansion of global knowledge.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We aim to foster research partnerships that contribute to a swifter expansion of global knowledge.

Engineering Group Research Article 記事ID: igmin112

Federated Learning- Hope and Scope

Machine Learning Data EngineeringArtificial Intelligence DOI10.61927/igmin112 Affiliation

Affiliation

    Lhamu Sherpa, Department of Computer Science and Engineering, Sikkim Manipal Institute of Technology, Sikkim, India, Email: [email protected]

6.2k
VIEWS
1.5k
DOWNLOADS
Connect with Us

要約

People are suffering from” data obesity” as a result of the expansion and quick development of various Artificial Intelligence (AI) technologies and machine learning fields. The management of the current techniques is becoming more challenging due to the data created in the Smart-Health and Fintech service sectors. To provide stable and reliable methods for processing the data, several Machine Learning (ML) techniques were applied. Due to privacy-related issues with the aforementioned two providers, ML cannot fully use the data, which becomes difficult since it might not give the results that were expected. When the misuse and exploitation of personal data were gaining attention on a global scale and traditional machine learning (CML) was facing difficulties, Google introduced the concept of Federated Learning (FL). In order to enable the cooperative training of machine learning models among several organizations under privacy requirements, federated learning has been a popular research area. The expectation and potential of federated learning in terms of smart-health and fintech services are the main topics of this research.

数字

参考文献

    1. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and applications. 2019.
    2. Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated Learning, ser. Synthesis Lectures on Artificial Intelligence and Machine Morgan & Claypool Publishers, 2019. https://books.google.co.in/books?id=JdPGDwAAQBAJ
    3. Long G, Tan Y, Jiang J, Zhang C. Federated learning for openbanking. 2021.
    4. Hussain GKJ, Manoj G. Federated learning: A survey of a new approach to machine learning. In 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). 2022; 1-8.
    5. Stanˇo M, Hluchy L, Boba´k M, Krammer P, Tran V. Federated learning methods for analytics of big and sensitive distributed data and survey. In 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI). 2023; 000 705–000
    6. Dasaradharami Reddy K, Gadekallu TR. A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics. Comput Intell Neurosci. 2023 Mar 1;2023:8393990. doi: 10.1155/2023/8393990. PMID: 36909974; PMCID: PMC9995203.

類似の記事

A Case of Facial Erysipelas with Necrosis of the Upper Eyelid
Mariana LevkivYaroslav Nahirnyi, Vasyl Kopcha, Nataliya Tverdokhlib and Ivan Stefaniv
DOI10.61927/igmin241
Lifestyle and Well-being among Portuguese Firefighters
Laura Carmona, Raquel Pinheiro, Joana Faria-Anjos, Sónia Namorado and Maria José Chambel
DOI10.61927/igmin146
Exploring Upper Limb Kinematics in Limited Vision Conditions: Preliminary Insights from 3D Motion Analysis and IMU Data
Artemis Zarkadoula, Themistoklis Tsatalas, George Bellis, Paris Papaggelos, Evangelia Vlahogianni, Stefanos Moustos, Eirini Koukourava and Dimitrios Tsaopoulos
DOI10.61927/igmin138

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement