Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

We are dedicated to advancing research by promoting dialogue between diverse scientific communities.

Articles

We are dedicated to advancing research by promoting dialogue between diverse scientific communities.

Explore Content

We are dedicated to advancing research by promoting dialogue between diverse scientific communities.

Identify Us

We are dedicated to advancing research by promoting dialogue between diverse scientific communities.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We are dedicated to advancing research by promoting dialogue between diverse scientific communities.

Biology Group Research Article 記事ID: igmin322

Accessible H2O on Mars – A Critical Review of Current Knowledge

Hydrology DOI10.61927/igmin322 Affiliation

Affiliation

    1Independent Researcher, 1445 Indiana Avenue, South Pasadena, CA 91030, USA

    2Department of Chemical & Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK

9
VIEWS
2
DOWNLOADS
Connect with Us

要約

Here, we review what is known about the distribution of accessible H2O on Mars. While “Accessible” in this review implies within about 5 m of the surface, at an elevation at least 2 km lower than the MOLA Datum, and at a latitude within ±20°, possibly extendable to ±30°, we have extended our review to cover observations of  H2O at moderate depth within the latitude range ±60°. 
Twenty years ago, the neutron spectra and initial ice stability models suggested that ground ice on Mars was likely to be rare equatorward of about 50° latitude. Since then, observation after observation from orbit (using radar, photography and spectroscopy) revealed the likely presence of huge amounts of imbedded ice within the subsurface of Mars, at various depths mostly at so-called “mid-latitudes”. As a result, the pendulum has swung to the point that some enthusiastically suggest that ground ice occurs almost everywhere on Mars. We reviewed the various observations and analyses regarding H2O on Mars. Near-surface ice has been observed, spectra and radar have implied, and ground features have been interpreted to indicate that in wide areas of Mars, shallow ice apparently occurs at latitudes greater than 40° and at a few locations, persists into the 30s. The depths of such putative ice are not well known. Further study with much higher resolution might possibly reveal shallow ice at lower latitudes in unique locations. Mineral hydrates might offer a possible alternative as a supply of H2O.

数字

参考文献

    1. Golombek M, Williams N, Wooster P, et al. SpaceX Starship landing sites on Mars. 52nd Lunar and Planetary Science Conference 2021. 2022; (LPI Contrib. No. 2548).
    2. Viola D, McEwen AS, Dundas CM. Mid-latitude Martian ice as a target for human exploration, astrobiology, and in-situ resource utilization. First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars. 2015. Available from: https://www.hou.usra.edu/meetings/explorationzone2015/pdf/1011.pdf
    3. Rapp D. Will SpaceX send humans to Mars in 2028? IgMin Res. 2024 Dec 13;2(12):969-983. IgMin ID: igmin274. doi: 10.61927/igmin274. Available from: igmin.link/p274
    4. Rapp D. Preparing for SpaceX mission to Mars. IgMin Res. 2025 Mar 4;3(3):123-132. IgMin ID: igmin292. doi: 10.61927/igmin292. Available from: igmin.link/p292
    5. Rapp D. Human Missions to Mars. 2nd ed. 2012; 3rd ed. 2023. Heidelberg (Germany): Springer-Praxis Books; Springer. Appendix A: Solar energy on Mars. Appendix C: Water on Mars.
    6. Mellon MT, Jakosky BM. The distribution and behavior of Martian ground ice during past and present epochs. J Geophys Res. 1995;100:11781-11799.
    7. Chamberlain MA, Boynton WV. Modeling depth to ground ice on Mars. Lunar Planet Sci XXXV. 2004; Paper 1650.
    8. Chamberlain MA, Boynton WV. Response of Martian ground ice to orbit-induced climate change. J Geophys Res Planets. 2007;112. doi: 10.1029/2006JE002801.
    9. Kite ES, Tutolo BM, Turner ML, Franz HB, Burtt DG, Bristow TF, Fischer WW, Milliken RE, Fraeman AA, Zhou DY. Carbonate formation and fluctuating habitability on Mars. Nature. 2025 Jul;643(8070):60-66. doi: 10.1038/s41586-025-09161-1. Epub 2025 Jul 2. PMID: 40604181; PMCID: PMC12221984.
    10. Skorov YV. Stability of water ice under a porous nonvolatile layer: implications to the south polar layered deposits of Mars. Planetary and Space Sci. 2001;49:59-63.
    11. Mellon MT, Phillips RJ. Recent gullies on Mars and the source of liquid water. Abstracts of Papers Submitted to the 32nd Lunar and Planetary Science Conference. Houston (TX): Lunar and Planetary Institute; 2001. CD 32, Abstract 1182.
    12. Schorghofer N, Aharonson O. Stability and exchange of subsurface ice on Mars. Lunar Planet Sci XXXV. 2004; Paper 1463. Schorghofer N, Aharonson O. Stability and exchange of subsurface ice on Mars. Journal of Geophysical Research. 2005;110:E05003.
    13. Mellon M, Feldman W, Prettyman T. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus. 2004 Jun;169(2):324-340. doi:10.1016/j.icarus.2003.10.022.
    14. Vincendon M, Mustard J, Forget F, et al. Near-tropical subsurface ice on Mars. Geophysical Research Letters. 2010. doi:10.1029/2009GL041426.
    15. Mellon MT, Sizemore HG. The history of ground ice at Jezero Crater Mars and other past, present, and future landing sites. Icarus. 2022;371:114667. doi:10.1016/j.icarus.2021.114667.
    16. Lange L, Forget F, Vincendon M, Spiga A, Vos E, Aharonson O, Millour E, Bierjon A, Vandemeulebrouck R. A reappraisal of subtropical subsurface water ice stability on Mars. Geophysical Research Letters. 2023. doi:10.1029/2023GL105177.
    17. Daubar IJ, Dundas CM, McEwen AS, et al. New craters on Mars: an updated catalog. JGR. 2022. doi:10.1029/2021JE007145.
    18. Boynton WV, Feldman WC, Squyres SW, Prettyman TH, Bruckner J, Evans LG, Reedy RC, Starr R, Arnold JR, Drake DM, Englert PA, Metzger AE, Mitrofanov I, Trombka JI, D'Uston C, Wanke H, Gasnault O, Hamara DK, Janes DM, Marcialis RL, Maurice S, Mikheeva I, Taylor GJ, Tokar R, Shinohara C. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science. 2002 Jul 5;297(5578):81-5. doi: 10.1126/science.1073722. Epub 2002 May 30. PMID: 12040090.
    19. Feldman WC, Prettyman TH, Maurice S, et al. Global distribution of near-surface hydrogen on Mars. J Geophys Res. 2004;109:E09006.
    20. Karunatillake S, Wray JJ, Gasnault O, et al. Sulfates hydrating bulk soil in the Martian low and middle latitudes. Geophysical Research Letters. 2014;41(22):7987-7996. doi:10.1002/2014GL061136.
    21. Pathare AV, Feldman WC, Prettyman TH, Maurice S. Driven by excess? Climatic implications of new global mapping of near-surface water-equivalent hydrogen on Mars. Icarus. 2018;301:97-116. doi:10.1016/j.icarus.2017.09.031.
    22. Butcher FEG. Water ice at mid-latitudes on Mars. In: Oxford Research Encyclopedia of Planetary Science. Oxford Research Encyclopedias. Oxford University Press; 2022. ISBN 9780190647926. doi:10.1093/acrefore/9780190647926.013.239.
    23. Mitrofanov IG, Zuber MT, Litvak ML, Boynton WV, Smith DE, Drake D, Hamara D, Kozyrev AS, Sanin AB, Shinohara C, Saunders RS, Tretyakov V. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars. Science. 2003 Jun 27;300(5628):2081-4. doi: 10.1126/science.1084350. PMID: 12829779.
    24. Wilson JT, Eke VR, Massey RJ, et al. Equatorial locations of water on Mars: improved resolution maps based on Mars Odyssey Neutron Spectrometer data. Icarus. 2018;295:148. doi:10.1016/j.icarus.2017.07.028.
    25. Mitrofanov IG, Litvak ML, Varenikov AB, et al. Dynamic Albedo of Neutrons (DAN) experiment onboard NASA’s Mars Science Laboratory. Space Sci Rev. 2012;170:559-582.
    26. Malakhov AV, Mitrofanov IG, Golovin DV, et al. High resolution map of water in the Martian regolith observed by FREND neutron telescope onboard ExoMars TGO. Journal of Geophysical Research: Planets. 2022;127(5):e2022JE007258. doi:10.1029/2022JE007258.
    27. Mitrofanov A, Malakhov A, Djachkova M, et al. The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars. Icarus. 2022;374. doi:10.1016/j.icarus.2021.114805.
    28. Jakosky BM, Mellon MT, Varnes ES, Feldman WC, Boynton WV, Haberle RM. Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus. 2005;175:58-67. Erratum in: Icarus. 2005;178:291-293.
    29. Putzig NE, Mellon MT, Kretke KA, Arvidson RE. Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus. 2005 Feb;173(2):325-341. doi:10.1016/j.icarus.2004.08.017.
    30. Zheng L. Water ice resources on the shallow subsurface of Mars: indications to rover-mounted radar observation. Remote Sensing (MDPI). 2024;16(5):824. Available from: https://www.mdpi.com/2072-4292/16/5/824.
    31. Virkki AK, Neish CD, Rivera-Valentín EG, et al. Planetary radar—state-of-the-art review. Remote Sensing (MDPI). 2023;15(23):5605. Available from: https://www.mdpi.com/2072-4292/15/23/5605.
    32. Watters TR, Campbell BA, Leuschen CJ, et al. Evidence of ice-rich layered deposits in the Medusae Fossae Formation of Mars. Geophysical Research Letters. 2023. doi:10.1029/2023GL105490.
    33. Fastook JL, Head JW. Origin of ice in the Medusae Fossae Formation, equatorial Mars. Icarus. 2024;421:116226. doi:10.1016/j.icarus.2024.116226.
    34. European Space Agency (ESA). Buried ice at the equator. 2024. Press release. Available from: https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Buried_water_ice_at_Mars_s_equator.
    35. Putzig N, Brothers TC, Sutton S. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters. 2015. doi:10.1002/2015GL064844.
    36. Bramson AM, Byrne S, Putzig NE, et al. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters. 2015 Aug 26. doi:10.1002/2015GL064844.
    37. Bramson AM, Byrne S, Bapst J. Preservation of midlatitude ice sheets on Mars. Journal of Geophysical Research: Planets. 2017;122:2250-2266. doi:10.1002/2017JE005357.
    38. Gou S, Yue Z, Di K, et al. Subsurface stratigraphy suggested by the layered ejecta craters in the Martian northern planitiae. Icarus. 2024;416:116100. doi:10.1016/j.icarus.2024.116100.
    39. Stuurman CM, Osinski GR, Holt JW, et al. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters. 2016;43(18):9484-9491. doi:10.1002/2016GL070138.
    40. Hibbard SM, Williams NR, Golombek MP, Osinski GR, Godin E. Evidence for widespread glaciation in Arcadia Planitia, Mars. Icarus. 2021;359:114298. doi:10.1016/j.icarus.2020.114298.
    41. Wang Y, Feng X, Zhou H, et al. Water ice detection research in Utopia Planitia based on simulation of Mars rover full-polarimetric subsurface penetrating radar. Remote Sensing (MDPI). 2022. Special issue: Advanced Ground Penetrating Radar Theory and Applications.
    42. Ma Y, Xiao Z, Luo F, et al. SHARAD observations for layered ejecta deposits formed by late-Amazonian-aged impact craters at low latitudes of Mars. Icarus. 2023;404:115689. doi:10.1016/j.icarus.2023.115689.
    43. Plaut JJ, Safaeinili A, Holt JW, Phillips RJ, Head JW, Seu R, Putzig NE, Frigeri A. Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys Res Lett. 2009;36:L02203. doi:10.1029/2008GL036379.
    44. Petersen EI, Holt JW, Levy JS. High ice purity of Martian lobate debris aprons at the regional scale: evidence from an orbital radar sounding survey in Deuteronilus and Protonilus Mensae. Geophys Res Lett. 2018;45(21):11595-11604. doi:10.1029/2018GL079759.
    45. Chuang FC, Crown DA, Berman DC, Joseph ECS. Mapping lobate debris aprons and related ice-rich flow features in the Southern Hemisphere of Mars. 44th Lunar and Planetary Science Conference. 2013.
    46. Sinha RK, Ray D. Extensive glaciation in the Erebus Montes region of Mars. Icarus. 2021;367:114557. doi:10.1016/j.icarus.2021.114557.
    47. Baker DMH, Head JW. Extensive Middle Amazonian mantling of debris aprons and plains in Deuteronilus Mensae, Mars: implications for the record of mid-latitude glaciation. Icarus. 2015;260:269-288. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=14f39b8bcd6c88f7460dcf9bf9d04ea2b2cac803
    48. Hauber E, van Gasselt S, Chapman MG, Neukum G. Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: indicators of the Martian paleoclimate. JGR Planets. 2008 Feb 21. doi:10.1029/2007JE002897.
    49. Steinberg Y, Smith IB, Aharonson O. Physical properties of subsurface water ice deposits in Mars’s mid-latitudes from the Shallow Radar. Icarus. 2025;441:116716.
    50. Hamran S-E, Paige DA, Amundsen HEF. Radar Imager for Mars’ Subsurface Experiment (RIMFAX). Space Sci Rev. 2020;216:128. doi:10.1007/s11214-020-00740-4.
    51. Hamran SE, Paige DA, Allwood A, Amundsen HEF, Berger T, Brovoll S, Carter L, Casademont TM, Damsgård L, Dypvik H, Eide S, Fairén AG, Ghent R, Kohler J, Mellon MT, Nunes DC, Plettemeier D, Russell P, Siegler M, Øyan MJ. Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars. Sci Adv. 2022 Aug 26;8(34):eabp8564. doi: 10.1126/sciadv.abp8564. Epub 2022 Aug 25. PMID: 36007008; PMCID: PMC9410267.
    52. Paige D, Hamran S-E, Amundsen HEF, Berger T. Ground penetrating radar observations of the contact between the western delta and the crater floor of Jezero Crater, Mars. Science Advances. 2024 Jan 26;10(4). doi:10.1126/sciadv.adi8339.
    53. Zhou B, Shen S, Lu W, Liu Q, Tang C, Li S, Fang G. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth Planet Phys. 2020;4:345-354.
    54. Li C, Zheng Y, Wang X, Zhang J, Wang Y, Chen L, Zhang L, Zhao P, Liu Y, Lv W, Liu Y, Zhao X, Hao J, Sun W, Liu X, Jia B, Li J, Lan H, Fa W, Pan Y, Wu F. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar. Nature. 2022 Oct;610(7931):308-312. doi: 10.1038/s41586-022-05147-5. Epub 2022 Sep 26. Erratum in: Nature. 2023 Feb;614(7947):E30. doi: 10.1038/s41586-023-05734-0. PMID: 36163288; PMCID: PMC9556330.
    55. Dundas CM, Mellon MT, Conway SJ, et al. Widespread exposures of extensive clean shallow ice in the midlatitudes of Mars. Journal of Geophysical Research: Planets. 2021;126(3). doi:10.1029/2020JE006617.
    56. Dundas CM, Mellon MT, Posiolova LV, et al. A large new crater exposes the limits of water ice on Mars. Geophysical Research Letters. 2023;50(2). doi:10.1029/2022GL100747.
    57. Posiolova LV, Lognonné P, Banerdt WB, Clinton J, Collins GS, Kawamura T, Ceylan S, Daubar IJ, Fernando B, Froment M, Giardini D, Malin MC, Miljković K, Stähler SC, Xu Z, Banks ME, Beucler É, Cantor BA, Charalambous C, Dahmen N, Davis P, Drilleau M, Dundas CM, Durán C, Euchner F, Garcia RF, Golombek M, Horleston A, Keegan C, Khan A, Kim D, Larmat C, Lorenz R, Margerin L, Menina S, Panning M, Pardo C, Perrin C, Pike WT, Plasman M, Rajšić A, Rolland L, Rougier E, Speth G, Spiga A, Stott A, Susko D, Teanby NA, Valeh A, Werynski A, Wójcicka N, Zenhäusern G. Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation. Science. 2022 Oct 28;378(6618):412-417. doi: 10.1126/science.abq7704. Epub 2022 Oct 27. PMID: 36302013.
    58. Viola D, McEwen AS, Dundas CM, Byrne S. Expanded secondary craters in the Arcadia Planitia region, Mars: evidence for tens of Myr-old shallow subsurface ice. Icarus. 2015;248:190–204.
    59. Vincendon M, Forget F, Mustard J. Water ice at low to midlatitudes on Mars. Journal of Geophysical Research. 2010;115:E10001. doi:10.1029/2010JE003584.
    60. Piqueux S, Buz J, Edwards CS, et al. Widespread shallow water ice on Mars at high latitudes and midlatitudes. Geophysical Research Letters. 2019;46. doi:10.1029/2019GL083947.
    61. Mangold N, Maurice S, Feldman WC, Costard F, Forget F. Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars. JGR Planets. 2004. doi:10.1029/2004JE002235.
    62. Morgan GA, Putzig NE, Baker DMH, et al. Refined mapping of subsurface water ice on Mars to support future missions. The Planetary Science Journal. 2025;6:29. doi:10.3847/PSJ/ad9b24.
    63. Gourronc M, Bourgeois O, Mège D, et al. One million cubic kilometers of fossil ice in Valles Marineris: relicts of a 3.5 Gy old glacial land system along the Martian equator. Geomorphology. 2014;204:235–255. doi:10.1016/j.geomorph.2013.08.009.
    64. Khuller AR, Christensen PR. Evidence of exposed dusty water ice within Martian gullies. JGR Planets. 2021;126(2):e2020JE006539. doi:10.1029/2020JE006539.
    65. Shean DE. Candidate ice-rich material within equatorial craters on Mars. Geophysical Research Letters. 2010. doi:10.1029/2010GL045181.
    66. Science Magazine. Phoenix touches Martian ice. 2008. Available from: https://www.science.org/content/article/phoenix-touches-martian-ice
    67. Ehlmann BL, Edwards CS. Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences. 2014;42:291–315. doi:10.1146/annurev-earth-060313-055024.
    68. Audouard J, Poulet F, Vincendon M, et al. Water in the Martian regolith from OMEGA/Mars Express. Journal of Geophysical Research: Planets. 2014;119(8):1969–1989. doi:10.1002/2014JE004649.
    69. Gross C, Al-Samir M, Bishop JL, Poulet F, Postberg F, Schubert D. Prospecting in-situ resources for future crewed missions to Mars. Acta Astronautica. 2024;223:15–24. doi:10.1016/j.actaastro.2024.07.003.
    70. Riu L, Carter J, Poulet F, Cardesín-Moinelo A, Martin P. Global surficial water content stored in hydrated silicates at Mars from OMEGA/MEx. Icarus. 2023;398:115537. doi:10.1016/j.icarus.2023.115537.
    71. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring JP, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature. 2008 Jul 17;454(7202):305-9. doi: 10.1038/nature07097. Epub 2008 Jul 16. PMID: 18633411.
    72. Wernicke LJ, Jakosky BM. Martian hydrated minerals: a significant water sink. JGR Planets. 2021;126(3):e2019JE006351. doi:10.1029/2019JE006351.
    73. Mustard JF. Sequestration of volatiles in the Martian crust through hydrated minerals. In: Volatiles in the Martian Crust. Elsevier; 2019. p. 247–263. doi:10.1016/B978-0-12-804191-8.00008-8.
    74. Siljeström S, Czaja AD, Corpolongo A, et al. Evidence of sulfate-rich fluid alteration in Jezero Crater floor, Mars. JGR Planets. 2024;129(1):e2023JE007989. doi:10.1029/2023JE007989.
    75. Karunatillake S, Wray JJ, Gasnault O, et al. Sulfates hydrating bulk soil in the Martian low and middle latitudes. Geophysical Research Letters. 2014;41(22):7987–7996. doi:10.1002/2014GL061136.
    76. Vaniman D, Chipera S, Rampe E, et al. Gypsum on Mars: a detailed view at Gale Crater. Minerals. 2024;14(8):815. doi:10.3390/min14080815.
    77. Clark BC, Morris RV, McLennan SM. Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett. 2005;240(1):73–94. doi:10.1016/j.epsl.2005.09.040.
    78. Ralphs M, Franz B, Baker T, Howe S. Water extraction on Mars for an expanding human colony. Life Sci Space Res (Amst). 2015 Nov;7:57-60. doi: 10.1016/j.lssr.2015.10.001. Epub 2015 Oct 22. PMID: 26553638.
    79. Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. JGR Planets. 2013;118:831–858. doi:10.1029/2012JE004145.
    80. Murchie SL, Ehlmann BL, Arvidson RE. Geological water resources for humans on Mars: constraints from orbital spectral mapping and in situ measurements. Lunar Planet Sci. 2016;47:abstract #1261.
    81. Murchie SL, Arvidson RE, Bishop JL, et al. Maximizing the science and resource mapping potential of orbital VSWIR spectral measurements of Mars. Planetary Science and Astrobiology Decadal Survey 2023-2032 white paper. Bull Am Astron Soc. 2021;53(4):e-id. 119.
    82. Golombek M, Rapp D. Size-frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions. JGR. 1997;102:4117–4129.
    83. Golombek M, Huertas A, Kipp D, Calef F. Rock abundance maps of the final four Mars Science Laboratory landing sites. Mars J. 2012;7:1–22. doi:10.1555/mars.2012.0001.
    84. Inglevakis V. Martian Aqua: occurrence of water and appraisal of acquisition technologies. Manuscript under preparation. 2025.
    85. Martínez GM, Newman CN, De Vicente-Retortillo A, et al. The modern near-surface Martian climate: a review of in-situ meteorological data from Viking to Curiosity. Space Sci Rev. 2017;212(1–2):295–338. doi:10.1007/s11214-017-0360-x.
    86. Tamppari LK, Lemmon MT. Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus. 2020;343:113624. doi:10.1016/j.icarus.2020.113624.
    87. Titov DV. Water vapour in the atmosphere of Mars. Adv Space Res. 2002;29(2):183–191. doi:10.1016/S0273-1177(01)00568-3.
    88. Titov DV, Markiewicz WJ, Thomas N, Keller HU, Sablotny RM, Tomasko MG, Lemmon MT, Smith PH. Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder. JGR Planets. 1999;104(E4):9019–9026. doi:10.1029/1998JE900046.
    89. Knutsen EW, Montmessin F, Verdier L, et al. Water vapor on Mars: a refined climatology and constraints on the near-surface concentration enabled by synergistic retrievals. JGR Planets. 2022;127(5). doi:10.1029/2022JE007252.
    90. Rapp D. Human missions to Mars using the Starship. IgMin Res. Submitted July 2025.
    91. Drake BG. Human exploration of Mars – Design Reference Architecture 5.0 (DRA-5). NASA Report SP-2009-566. 2009.
    92. Bussey B, Hoffman SJ. Human Mars landing site and impacts on Mars surface operations. 2016 IEEE Aerospace Conference. 2016. doi:10.1109/AERO.2016.7500775. Available from: https://ntrs.nasa.gov/api/citations/20160001040/downloads/20160001040.pdf
    93. Ming DW, Morris RV. Chemical, mineralogical, and physical properties of Martian dust and soil. Meeting: Dust in the Atmosphere of Mars and Its Impact on Human Exploration Workshop, Houston, TX, June 13–15, 2017.
    94. Benkoula S, Sublemontier O, Patanen M, Nicolas C, Sirotti F, Naitabdi A, Gaie-Levrel F, Antonsson E, Aureau D, Ouf FX, Wada S, Etcheberry A, Ueda K, Miron C. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles. Sci Rep. 2015 Oct 14;5:15088. doi: 10.1038/srep15088. PMID: 26462615; PMCID: PMC4604456.
    95. Cannon KM. Mineral resources of Mars based on decades of sample analysis. Space and Planetary Resources. 2025;1:1. Available from: https://doi.org/10.1007/s44461-025-00001-8
    96. Rudakova AV, Maevskaya MV, Emeline AV, Bahnemann DW. Light-Controlled ZrO2 Surface Hydrophilicity. Sci Rep. 2016 Oct 5;6:34285. doi: 10.1038/srep34285. PMID: 27703174; PMCID: PMC5050454.

類似の記事

Preventing Chronic Pain: Solutions to a Public Health Crisis
James Fricton, Karen Lawson, Robert Gerwin and Sarah Shueb
DOI10.61927/igmin282
Potentially Toxic Metals in Cucumber Cucumis sativus Collected from Peninsular Malaysia: A Human Health Risk Assessment
Chee Kong Yap, Rosimah Nulit, Aziran Yaacob, Zaieka Shamsudin, Meng Chuan Ong, Wan Mohd Syazwan, Hideo Okamura, Yoshifumi Horie, Chee Seng Leow, Ahmad Dwi Setyawan, Krishnan Kumar, Wan Hee Cheng and Kennedy Aaron Aguol
DOI10.61927/igmin200

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement