Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

Our mission is to encourage the fusion of ideas across various scientific realms for quicker progress.

Articles

Our mission is to encourage the fusion of ideas across various scientific realms for quicker progress.

Explore Content

Our mission is to encourage the fusion of ideas across various scientific realms for quicker progress.

Identify Us

Our mission is to encourage the fusion of ideas across various scientific realms for quicker progress.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our mission is to encourage the fusion of ideas across various scientific realms for quicker progress.

Biology Group Short Communication 記事ID: igmin163

Comments to Megascopic Quantum Phenomena

Biophysics Molecular BiologyNanotechnologyChemistry DOI10.61927/igmin163 Affiliation

Affiliation

    Michal Svrček, CMOA Czech Branch, Carlsbad, Czech Republic, Email: [email protected]

8.7k
VIEWS
824
DOWNLOADS
Connect with Us

要約

We present here the incompleteness of the Copenhagen interpretation regarding the impossibility of explaining the transition from the exact quantum mechanics to the Born-Oppenheimer approximation, where the inaccurate method captures phenomena like spontaneous symmetry breaking, but this is impossible to achieve with exact equations. The solution to this dilemma lies in the revision of quantum field theory which bounds together internal and external (vibrational, translational, and rotational) degrees of freedom in a similar way as the Lorentz transformation deals with space and time. This is the only way how to exactly mathematically justify the corrections beyond the Born-Oppenheimer approximation (Born-Huang ansatz). The consequences are overwhelming: It reveals the wrong BCS theory of superconductivity, derived on the basis of the incomplete quantum field, and all erroneous theories inspired by the BCS one (e.g. Higgs mechanism). Moreover, the second Bohr complementarity emerges from the mechanical wholeness and field fragmentation, opening the door for the megascopic mirror of the microscopic Copenhagen interpretation and for the explanation of megascopic quantum phenomena. Finally, we get an entirely new look at the meaning of physics and chemistry: The first one deals with microscopic and the second one with megascopic phenomena.

参考文献

    1. Svrček M. Megascopic Quantum Phenomena: A Critical Study of Physical Interpretations. Progress in Theoretical Chemistry and Physics. 2020; 32: 283-392. Springer, Cham Free copy available in arxiv.org/abs/2004.00978
    2. Bohr N. Atomic Physics and Human Knowledge, John Wiley & Sons, New York. 1958.
    3. Born M, Oppenheimer R. Ann Phys. (Leipzig). 1927; 84: 457.
    4. Sutcliffe B, Woolley RG. Progress in Theoretical Chemistry and Physics. 2013; 27: Part 1, 3-40.
    5. Jahn HA, Teller E. Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proc R Soc London A. 1937; 161: 220.
    6. Cafiero M, Adamowicz L. Molecular structure in non-Born-Oppenheimer quantum mechanics. Chem Phys Letters. 2004; 387: 136-141.
    7. Born M, Huang K. The Dynamical Theory of Crystal Lattices. Oxford University Press, London. 1954.
    8. Kutzelnigg W. The adiabatic approximation I. The physical background of the Born-Handy ansatz. Mol Phys. 1997; 90: 909.
    9. Bohm D. Wholeness and the Implicate Order, Routledge Classics, London and New York. 1980.
    10. Jordan P. On the Process of Measurement in Quantum Mechanics. Philosophy of Science. 1949; 16: 269-278.
    11. Bardeen J, Cooper LN, Schrieffer JR. Theory of Superconductivity. Phys Rev. 1957; 108: 1175.
    12. Fröhlich H. Interaction of electrons with lattice vibrations. Proc R Soc Lond. 1952; A215: 291.
    13. Meissner W, Ochsenfeld R. A new effect when superconductivity occurs. Natural Sciences. 1933; 21(44): 787–788.
    14. Hirsch JE. The origin of the Meissner effect in new and old superconductors . Physica Scripta. 2012; 85: 035704.
    15. Goldstone J. Field theories with Superconductor solutions. New Challenge. 1961; 19: 154–164.
    16. Comay E. Inherent Contradictions in Higgs Boson Theory. American Journal of Modern Physics. 2015; 5:18-22.
    17. Higgs PW. Nobel Lecture: Evading the Goldstone theorem. Rev Mod Phys. 2014; 86: 851.
    18. Maxwell JC, Garber E, Brush SG, Everitt CWF. Maxwell on heat and statistical mechanics: On avoiding all personal enquiries of molecules, Bethlehem: Lehigh University Press. 1995.
    19. Collected Works of Charles Sanders Peirce. Cambridge, Mass. 1964; 45–46.
    20. van Fraassen BC. Laws and Symmetry. Oxford, New York: Oxford University Press.
    21. Einstein A, de Haas WJ. Experimental proof of Ampere molecular currents. German Physical Society. Negotiations 1915; 17.
    22. Whyte LL. The Unconscious before Freud. Basic Books. New York. 1960.
    23. Beato G. Aurelius Occultae Philosophorum. In Theatrum Chemicum. Strasbourg: Zetzner. 1613; IV.
    24. Everett H. "Relative State" Formulation of Quantum Mechanics. Rev Mod Phys. 1957; 29: 454.

類似の記事

Examining the Causal Connection between Lipid-lowering Medications and Malignant Meningiomas through Drug-target Mendelian Randomization Analysis
Liantai Song, Xiaoyan Guo, Wenhui Zhang, Mengjie Li, Xinyi Wu, Ziqian Kou, Yuxin Wang, Zigeng Ren and Qian Xu
DOI10.61927/igmin187
EB Naevi-like Lesion in Infant Bullous Pemphigoid
Laura Serpa, Haizza Monteiro, Maria de Oliveira Buffara, Raíssa Rodriguez, Ana Luisa Alves, Viviane Maria Maiolini and Elisa Fontenelle
DOI10.61927/igmin201
Diagnostic Challenges in Pancreatic Tumors
Ionuţ Simion Coman, Elena Violeta Coman, Costin George Florea, Teodora Elena Tudose, Cosmin Burleanu, Anwar Erchid and Valentin Titus Grigorean
DOI10.61927/igmin185

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement