Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

Our mission is to encourage knowledge exchange between fields to promote rapid growth.

Articles

Our mission is to encourage knowledge exchange between fields to promote rapid growth.

Explore Content

Our mission is to encourage knowledge exchange between fields to promote rapid growth.

Identify Us

Our mission is to encourage knowledge exchange between fields to promote rapid growth.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

140 of 211
Screening for Sexually Transmitted Infections in Adolescents with Genitourinary Complaints: Is There a Still Role for Endocervical Gram Stains?
Subah Nanda, Amanda Schoonover, Jasman Kaur, Annie Vu, Erica Tavares, Angela Zamarripa, Christian Kolacki, Lindsey Ouellette and Jeffrey Jones
Abstract

要約 at IgMin Research

Our mission is to encourage knowledge exchange between fields to promote rapid growth.

Engineering Group Review Article 記事ID: igmin250

Artificial Intelligence & the Capacity for Discrimination: The Imperative Need for Frameworks, Diverse Teams & Human Accountability

Educational Technology Machine LearningArtificial IntelligenceEducational Science DOI10.61927/igmin250 Affiliation

Affiliation

    Destiny J Hunter, National University, Kuinua Tech LLC, USA, Email: [email protected]; [email protected]

5.6k
VIEWS
828
DOWNLOADS
Connect with Us

要約

The increasing integration of Artificial Intelligence (AI) in various industries has led to concerns about how these systems can perpetuate discrimination, particularly in fields like employment, healthcare, and public policy. Multiple academic and business perspectives on AI discrimination, focusing on the need for global policy coordination and ethical oversight to mitigate biased outcomes, ask for our technical innovators to create contingencies that will better protect humanity’s experience with AI’s ever-expanding reach. Central to the key constructs such as biased datasets, algorithmic transparency, and the global governance of AI systems can function as a harmful drawback to these systems. Without adequate data governance and transparency, AI systems can perpetuate discrimination. 
AI's ability to discriminate stems primarily from biased data and the opacity of machine learning models, necessitating proactive research and policy implementation on a global scale. These frameworks must transcend the limitations of the experiences or perspectives of their programmers to ensure that AI innovations are ethically sound and that their use in global organizations adheres to principles of fairness and accountability. This synthesis will explore how these articles advocate for comprehensive, continuous monitoring of AI systems and policies that address both local and international concerns, offering a roadmap for organizations to innovate responsibly while mitigating the risks of AI-driven discrimination.

参考文献

    1. Ajunwa I. Artificial intelligence and the challenges of workplace discrimination. SSRN Electron J. 2020.
    2. Binns R, Veale M, Van Kleek M. Integrating ethics in AI development: A qualitative study. BMC Med Ethics. 2022;23:100.
    3. Westerman G. How to implement digital transformation successfully. Harv Bus Rev. 2020.
    4. Floridi L, Cowls J. The global impact of artificial intelligence on public policy. Sustainability. 2020;12(17):7076.
    5. S. Equal Employment Opportunity Commission. ITutorGroup to pay $365,000 to settle EEOC discriminatory hiring suit. US EEOC. 2023 Sep 11. Available from: https://www.eeoc.gov/newsroom/itutorgroup-pay-365000-settle-eeoc-discriminatory-hiring-suit
    6. Ribeiro MT, Singh S, Guestrin C. "Why should I trust you?" Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco, CA. p. 1135-44. Available from: https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
    7. Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, et al. Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and Transparency; 2019 Jan 29-Feb 1; Atlanta, GA. p. 220-9. Available from: https://dl.acm.org/doi/10.1145/3287560.3287596
    8. Zanzotto FM. Human-in-the-loop artificial intelligence. J Artif Intell Res. 2019;64:243-52.
    9. National Institute of Standards and Technology (NIST). Artificial Intelligence Risk Management Framework (AI RMF) 1.0. 2023. Available from: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf
    10. Wójcik MA. Algorithmic discrimination in health care: an EU law perspective. PubMed Central (PMC). 2022 Jun 1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212826/
    11. Raji ID, Buolamwini J. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial AI products. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society; 2019 Jan 27-28; Honolulu, HI. Available from: https://dl.acm.org/doi/10.1145/3306618.3314244

類似の記事

Relationship between Sustainable Development, Economy and Poverty
Antonio Oñate Tenorio and María del os Santos Oñate Tenorio
DOI10.61927/igmin224
Challenge and Readiness to Implemented Geothermal Energy in Indonesia
Endah Murtiana Sari, Kalyca Najla Manggala, Marvian Farabi Arief and Panduaji Suswanto Umar Said
DOI10.61927/igmin178
Slip Resistance Evaluation of 10 Indoor Floor Surfaces
Cal Snow, Cody Hays, Sarah Girard, Lorri Birkenbuel, Daniel Autenrieth and David Gilkey
DOI10.61927/igmin199
Solar Energy Resource Potentials of the City of Arkadag
Penjiyev Ahmet Myradovich and Orazov Parahat Orazmuhamedovich
DOI10.61927/igmin119
Cyber Threat Analysis (CTA) in Current Conflicts
Zbigniew Ciekanowski and Sławomir Żurawski
DOI10.61927/igmin169
Lifestyle and Well-being among Portuguese Firefighters
Laura Carmona, Raquel Pinheiro, Joana Faria-Anjos, Sónia Namorado and Maria José Chambel
DOI10.61927/igmin146

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement